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Cellular Automata Modeling of Land-Use/Land-
Cover Dynamics: Questioning the Reliability of Data

Sources and Classification Methods
Yulia Grinblat,* Michael Gilichinsky,y and Itzhak Benensonz

*Department of Geography and Human Environment and The Porter School of Environmental Studies, Tel Aviv University
yResearch and Development Center, Ariel University

zDepartment of Geography and Human Environment, Tel Aviv University

Based on four time intervals within a forty-year period of observation, we construct land-use/land-cover
(LULC) maps and estimate the transition probabilities between six LULC states. The maps and transition
probability matrices (TPMs) were built based on the high-resolution aerial photos and 30-m multispectral
Landsat images for the same years. We considered the TPM constructed from manual classification of the aerial
photos as a reference and compared it to the TPM constructed from the Landsat image classified with several
methods: mean-shift segmentation followed by random forest classification and three pixel-based methods pop-
ular in cellular automata (CA) studies: K-means, iterative self-organizing data analysis techniques (ISO-
DATA), and maximum likelihood. For each classification method, the TPMs were constructed and compared
to the TPMs for the aerial photos. We prove that the goodness-of-fit of maps obtained with the three pixel-
based methods was insufficient for estimating the LULC TPM. The LULC maps obtained with the object-based
classification fit well to those based on the aerial photos, but the estimates of TPM were yet qualitatively differ-
ent. This article raises doubts regarding the adequacy of Landsat data and standard classification methods for
establishing LULC CA model rules and calls for the careful reexamination of the entire land-use CA frame-
work. We appeal for a new view of the CA modeling methodology: It should be based on a long-term series of
carefully validated LULC maps that portray different types of land-use dynamics and land planning systems
over long and representative periods of population and economic growth. Key Words: cellular automata, Landsat
images, land-use/land-cover changes, Markov transition probabilities matrices, validation of remote sensing classification
methods.

我们根据在四十年观察期间的四次间隔,建构土地使用/地表覆盖 (LULC)的地图,并评估六个 LULC州的

转移可能性。这些地图与转移概率矩阵 (TPMs), 是根据同年的高分辨率航摄照片和三十公尺的多光谱地

球卫星影像建构之。我们考量从航摄照片的人工分类所建立的TPM作为参照, 并将其与以若干方法进行

分类的地球卫星影像所建构的TPM进行比较：均质平移分割, 以及随后的随机森林分类, 还有细胞自动机

(CA) 研究中以像素为基础的的三大流行方法：K-平均数, 迭代自组织数据分析演算法 (ISODATA),以及

最大化可能性。我们对每个分类方法建立 TPMs 并与航摄照片的TPMs进行比较。我们証实, 透过三个以

像素为基础的方法所取得的地图适合度, 对评估 LULC TPM 而言并不充足。以物件为基础的分类法所获

得的LULC地图, 相当符合根据航摄照片的地图, 但TPM的估计在数值上却仍不同。本文提出有关地球卫

星影像和标准分类方法在建立 LULC CA 模型规则上的适切性之质疑, 并呼吁再次对整个土地使用 CA
架构进行细緻的检验。我们恳求对 CA 模式化方法的崭新观点：它应该根据描绘在人口及经济成长的长

期代表週期中, 不同种类的土地使用动态和土地使用规划系统、且经过长时间仔细验证的 LULC 地图。

关键词： 细胞自动机, 地球卫星图像, 土地使用／地表覆盖变迁, 马尔科夫转移概率矩阵, 遥感分类方法
的验证。

Con base en intervalos temporales de cuatro dentro de un per�ıodo de observaci�on de cuarenta a~nos, construi-
mos mapas de uso del suelo/cobertura de la tierra (LULC) y calculamos las probabilidades de transici�on entre
seis LULC estatales. Los mapas y las matrices de probabilidades de transici�on (TPMs) fueron construidos con
base en aerofotos de alta resoluci�on e im�agenes Landsat multiespectrales de 30-m para los mismos a~nos. Toma-
mos como referencia la TPM construida a partir de la clasificaci�on manual de las aerofotos y la comparamos
con la TPM construida de la imagen Landsat clasificada con varios m�etodos: segmentaci�on de cambio mediano
seguida por clasificaci�on forestal aleatoria, y tres m�etodos basados en pixeles que son populares en los estudios
de modelos celulares aut�omatas (CA): el K-means, las t�ecnicas de an�alisis de datos iterativos auto-organizados
(ISODATA) y la probabilidad m�axima. Para cada m�etodo de clasificaci�on, las TPMs fueron construidas y com-
paradas con las TPMs para las aerofotos. Probamos que la bondad de ajuste de los mapas obtenidos con los tres
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m�etodos basados en pixeles era insuficiente para calcular la TPM de LULC. Los mapas de LULC obtenidos con
la clasificaci�on basada en objeto encajaron bien con los basados en aerofotos, aunque los c�alculos de la TPM
eran todav�ıa cualitativamente diferentes. Este art�ıculo levanta dudas sobre la idoneidad de los datos Landsat y
los m�etodos de clasificaci�on corrientes para establecer reglas del modelo CA LULC y clama por un cuidadoso
reexamen de todo el marco CA de uso del suelo. Somos partidarios de una nueva visi�on de la metodolog�ıa mod-
eladora de los CA: Esta debe basarse en una serie a largo plazo de mapas LULC cuidadosamente validados que
representen los diferentes tipos de din�amica de uso del suelo y sistemas de planificaci�on de la tierra sobre largos
y representativos per�ıodos de crecimiento de la poblaci�on y la econom�ıa. Palabras clave: celulares aut�omatas,
im�agenes Landsat, cambios de uso del suelo/cobertura del suelo, matrices Markov de probabilidades de transici�on, vali-
daci�on de m�etodos de clasificaci�on por percepci�on remota.

C
onceptual simplicity and the ability of explicit
representation of landscapes and their
changes make cellular automata (CA) a stan-

dard tool for simulating urban and regional land-use
dynamics (White and Engelen 1993; Clarke,
Hoppen, and Gaydos 1996; Balmann 1997; Stevens,
Dragicevic, and Rothley 2007). CA provide a conve-
nient and flexible framework and serve as a back-
ground for the implementation of various approaches
to the land-use/land-cover (LULC) dynamics model-
ing, including fuzzy set theory (Wu 1998), innovation
diffusion (Clarke, Hoppen, and Gaydos 1996; Can-
dau and Clarke 2000), development theory (Batty,
Xie, and Sun 1999), multicriteria evaluation (Wu
and Webster 1998), case-based reasoning (Du et al.
2010), artificial neural networks (Li and Yeh 2001;
Pijanowski et al. 2002), logistic regression (Verburg
et al. 2002; Wu 2002), and others. The potential of
CA for modeling LULC dynamics has been widely
recognized (Maria de Almeida et al. 2003; Kamusoko
et al. 2009; Guan et al. 2011; Mitsova, Shuster, and
Wang 2011).

The major source of data for CA modeling is remote
sensing (RS) multispectral imagery that is classified for
establishing land uses and covers. Typically, the ade-
quacy of LULC classification is validated based on the
comparison between the classified image and either
the reference map or a sample of ground control points
(GCPs). Typical overall goodness of fit is 80 to 90 per-
cent (see Table 1). The rules of CA regard LULC
changes that are the derivatives of the LULC maps,
however. Misclassification could have a dispropor-
tional effect on the estimates of these changes (Hall
et al. 1991). This is especially relevant for the changes
that occur during a typical CA LULC modeling time
interval of five to fifteen years: The lands for which
use has changed during such a time interval comprise,
at most, a few percent of the areas investigated.

The typical size of an investigated area varies
between several hundred and several thousand square

kilometers and the changes are mostly spread over the
borders of relatively homogeneous land-use patches rep-
resenting long-standing built-up areas, roads, agricul-
tural and open areas, forests, and water surfaces. In these
circumstances, the likely classification of the entire
study area does not guarantee an adequate view of the
area’s changes—the total amount and location—which
are critical for establishing the rules of the CAmodel.

Strangely enough, the adequacy of the output of RS
classification methods is far from the focus of CA
research. Despite several important studies that demon-
strate the importance of classification-dependent issues
for CA modeling, the majority of modeling studies take
the outputs of the imagery classification for granted and
focus on model calibration (Li and Yeh 2001; Logofet
and Korotkov 2002; Silva and Clarke 2002; Straatman,
White, and Engelen 2004; Pijanowski et al. 2005; Die-
tzel and Clarke 2007; Torrens 2011). Indeed, CA
dynamics are highly sensitive to the model settings,
including spatial and temporal resolution, and the rules’
parameters (Pontius 2002; Chen and Mynett 2003; Liu
and Andersson 2004; Pontius and Malizia 2004; Jantz
and Goetz 2005; Dietzel and Clarke 2006; Wang,
Zheng, and Zang 2012; Blanchard, Pontius, and Urban
2015). Model setting and parameters are defined by the
classified maps of the LULC changes; erroneous classifi-
cation will result in inadequate setting and transition
rules regardless of the methods of the rules’ calibration
and parameter estimation.

Generally, urban CAmodels are calibrated by tailor-
ing the parameters that control transition rules (Tor-
rens 2011). The Dutch Environment Explorer (Hagen-
Zanker et al. 2005) provides a comprehensive example
of calibration and validation that is performed at two
levels—regional and local. The dynamics at the local
level are defined by the CA model, and its parameters
are calibrated based on historical data using fuzzy-kappa
statistics. At the next stage, the likelihood of the LULC
maps generated by the proposed set of rules is judged by
the experts. Validation also involves comparison of the
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LULCmaps generated by the model to the maps gener-
ated by random allocation of the changes under the
same constraints as employed in the CA model and
other naive predicting procedures.

To investigate the relationship between the quality
of RS classification and the adequacy of the CA model
rules, we analyzed the LULC changes over the
15 £ 6 km transect that starts in the center of the city
of Netanya, Israel, and extends to surrounding agricul-
tural areas. Our study is based on the outcomes of man-
ual interpretation of high-resolution aerial photos of
this area performed over thirty-six years, divided into
four intervals of six to eleven years. In parallel, the stan-
dard source of the CA modeling—Landsat satellite
images of the same area for the same years—is analyzed
with several popular pixel-based methods of RS classifi-
cation and the object-based mean-shift segmentation
with the random forest (RF) classification. Based on
the output maps, we estimated the LULC changes for
each of the employed methods and then the land-use
transition probabilities that provide the basis for deriv-
ing the CA rules. The LULC changes and transition
probabilities estimated from RS imagery were then
compared to the LULC changes and land-use transition
probabilities estimated from the aerial photos.

We demonstrate that none of the investigated
pixel-based methods provided adequate land-use maps
that could be exploited for estimating land-use
changes and land-use transition probabilities. The
mean-shift segmentation with the RF classification
algorithms provided close to reality land-use maps but,
nonetheless, erroneous estimates of land-use changes
and land-use transition matrices.

We thus raise serious doubts regarding the adequacy
of CA models of LULC changes, and call the research-
ers to reexamine the adequacy of data sources and
approaches to LULC classification and validation for
CA modeling. To encourage this revision of our analy-
sis, we have published the full set of Netanya data at
https://drive.google.com/open?idD0B_OK-4hDBIH-
Y3hObXV5QkFGaTg.

RS Imagery Classification and Validation
for CA Modeling

Typically, CA models consider space as a rectangu-
lar grid of square cells that either directly fit to the pix-
els of the raster data source or aggregate several
adjacent cells of the source. Landsat images are the eas-
ily available first choice for establishing the CA rules,

and in this article we deal with standard Landsat images
of 30-m resolution available from the U.S. Geological
Survey (USGS) and the Global Land Cover Facility
(GLCF) at the University of Maryland. To become an
LULC map, an RS image must be classified. Two major
classes of the numerous RS imagery classification meth-
ods (Lu and Weng 2007) are pixel-based and object-
based methods. Pixel-based methods interpret individ-
ual pixels, whereas object-based methods aim first at
recognizing spatially continuous homogeneous
domains of pixels in the image (Yan et al. 2006) and
then on interpreting the land uses of these domains.

Table 1 presents details of the data sets and classifi-
cation methods exploited for establishing the CA rules
in twenty-two recent papers on LULC CA modeling.
According to these papers, pixel-based classification
algorithms are the most common in CA practice, and
both unsupervised and supervised classification pixel-
based algorithms are exploited.

In this article, we employ the most popular of the
pixel-based methods exploited for building CA models
of LULC dynamics: two of unsupervised classification
(K-means and iterative self-organizing data analysis
technique [ISODATA]), one of the supervised classifi-
cation (maximum likelihood [ML]) and one of hybrid
classification that combines unsupervised and supervised
classification (guided clustering; Bauer et al. 1994).

Object-based classification methods exploit the stan-
dard texture and spectral information of an image to rec-
ognize continuous homogeneous domains (segments) of
the image. Then, supervised classification of these
domains is performed. The popularity of LULC object-
based classification in change detection RS studies has
steadily grown (Yan et al. 2006). These algorithms are
still underused in CA studies, however, where the
majority of research is still based on simpler, pixel-based
methods (Table 1). The accuracy of land-use classifica-
tion is usually estimated by means of a confusion matrix
that measures the fit between the classified map and the
LULCmap of the “ground truth” for each of the defined
LULC classes. The standard aggregate measures of fit
between these maps are kappa and overall accuracy sta-
tistics (Foody 2002), and recently proposed new meas-
ures are quantity and allocation disagreements (Pontius
2000) and fuzzy-kappa (Hagen-Zanker, Straatman, and
Uljee 2005). In this article, we limit ourselves to stan-
dard measures of fit—overall accuracy (Pc), which esti-
mates the probability of correct classification, and
Cohen’s kappa (k) index, which estimates the overall
error of classification. Typically, the calculations of Pc
and k are based on comparison between the classified
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LULC map and reference data as a land-use map that
serves as the reality or a set of GCPs (Table 1). The
probability of correct classification of Pc varies between
one and zero, the values of k D 1 and k D ¡1 indicate
perfect agreement or disagreement between the classi-
fied and reference data, and the value of k D 0 is
expected for the random agreement between the maps.
For example, seven out of twenty-two papers listed in
Table 1 are based on the classified maps from the
National Land Cover (Mitsova, Shuster, and Wang
2011) and CORINE Land Cover (Petrov, Lavalle, and
Kasanko 2009; Vaz et al. 2012; White, Uljee, and Enge-
len 2012) databases. The reported thematic accuracy of
the National Land Cover Database is »80 percent
(Wickham et al. 2013) and the CORINE land cover
databases claim minimal accuracy of 85 percent (Euro-
pean Environment Agency 2007). The validity of these
data is problematic, however, and studies (Feranec et al.
2007; Verbeiren et al. 2013) emphasize that estimates
of the total built-up area based on the CORINE database
coverage exceed the real value by at least 10 percent.

In what follows, we compare the classified LULC
maps obtained with several methods of RS classifica-
tion, all frequently employed in LULC CA modeling
(Table 1), to the reality represented by the maps
obtained by the manual classification of aerial photos
for the same area. Our goal is to estimate whether the
outcome is good enough to serve as a background for
LULC CA modeling. We apply various methods of
LULC classification to the same set of Landsat images
that cover the experimental area and compare the
classified maps to the outcome of manual interpreta-
tion of aerial photos of that area.

Matrices of Transition Probabilities as a
Proxy of the CA Transition Rules

The CA model transition rules depend on the
state of a land unit and its neighboring units (Ben-
enson and Torrens 2004), and the essence of the
model is the dependence of the transition rules not
only on the state of the unit itself but also on the
state of its neighbors (Clarke, Hoppen, and Gaydos
1997; White, Engelen, and Uljee 1997; Balzter,
Braun, and K€ohler 1998; Pontius, Cornell, and Hall
2001; Pijanowski et al. 2002; Soares-Filho, Cou-
tinho Cerqueira, and Lopes Pennachin 2002; Ver-
burg et al. 2002; Paegelow and Olmedo 2005).
Given the number k of possible LULC states, an
aggregate description of the LULC CA state at a
current moment t is the row vector S(t) D (S1(t),

S2(t), . . ., Sk(t)) representing the numbers Si(t) of
CA cells in states i D 1, 2, . . ., k. The aggregate
state S(t C 1) of the CA at t C 1 is, then, defined
by the matrix of transition M(t, t C1) D {pij} where
pij is a fraction of cells that change their state from
i to j. The values of pij can be considered as proba-
bilities of transition from state i to state j and, in
its simplest interpretation, CA can be considered as
a Markov process with transition probabilities given
by a matrix M(t, t C 1). In the simplest case, M(t,
t C 1) is constant and does not vary in time; that
is, M(t, t C 1) D M.

Different sets of the CA rules can generate the same
transition matrix M. That is, one cannot guarantee
that a certain set of rules, despite generating the exper-
imentally estimated transition matrixM(t, t C 1), will
provide an adequate spatial forecast for the LULC
map at t C 1 based on the LULC pattern at t. The
opposite is true: If the transition matrix generated by
the CA is different from the one based on the real
LULC maps at t and at t C 1, then the CA rules are
inadequate. That is, the differences between two con-
secutive LULC maps that serve for estimating the CA
rules should adequately represent the changes that
happen in reality. The objective of this article is to
examine whether the common methods of RS analysis
provide sufficiently precise estimates of these changes.

The matrices of LULC transition probabilities pro-
vide the basis for estimating CA transition rules.
These rules are of numerous types. Some of the CA
models, such as DINAMICA EGO (Soares-Filho,
Coutinho Cerqueira, and Lopes Pennachin 2002),
CA_Markov, and Land Change Modeler modules of
the Idrisi GIS (Paegelow and Olmedo 2005) explic-
itly apply transition probability matrices (TPMs) in
each modeled period. In the majority of the CA mod-
els, however, including those presented in Table 1,
the rules of allocation of the total predicted amount
of LULC transitions are more complex.

Our research is based on the LULC dynamics of a part
of Netanya city over thirty-six years, registered at five
points in time, with intervals varying between six and
eleven years. We investigate several classification meth-
ods and, employing Landsat images as the standard source
of the CA data, we compare TPMs to the matrices based
on the reality portrayed in aerial photos.

The next section presents the methodology of the
research, followed by the application of the methodology
to the data on LULC changes in the city of Netanya over
a period of thirty-six years, divided into four intervals.
Based on Netanya’s case study, we demonstrate the
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limitations of the classification methods that are com-
monly exploited for constructing CA models of LULC
dynamics.We then discuss the obtained results.

Method

Study Area

Our area of study is a 15£ 6 km transect that starts in
the central business district of the city of Netanya
(32�200000 N, 34�510000 E), crosses it, and extends toward
the agricultural and open areas to the east of the city
(Figure 1). The transect starts at the seashore and reaches
the Samarian hills to the east. Part of the studied area is a
unique coastal ecosystem of sand dunes, which is pro-
tected by national law. The part beyond the built-up area
is a mix of cultivated agriculture, expansion of which is
restricted by local and national regulations, and open
areas (Orenstein, Frenkel, and Jahshan 2014).

The transect is located in the Sharon district, which is
a part of the highly urbanized Tel Aviv metropolitan
area. According to the Israeli Central Bureau of Statistics
(CBS 2009), nearly 16.6 percent of the area was under
residential, public, and industrial construction. In 2008,
the population density in the region was 1,122.9 resi-
dents/km2, in comparison with the national average of
323.1 residents/km2. During the period studied, 1972 to
2008, the population of the city of Netanya and of the
entire Sharon district doubled (Table 2).

Construction activities in Netanya and its neigh-
borhood were always high and further accelerated in
the early 1990s following a major wave of immigration

to Israel. After early 2000, construction declined for
several years and then accelerated again (CBS 2009).

Aerial Imagery

The set of aerial imagery that covers the entire tran-
sect for the years 1972, 1983, 1993, 1999, and 2008 has
been available from the Survey of Israel at a resolution
that increases with time (Table 3).

All aerial photos were geometrically rectified and cor-
rected with the ArcGIS 10.3 software (Esri, Redlands,
CA, USA) based on the control points that were derived
from digital orthophoto images constructed by the Survey
of Israel in 2012 at 0.25 m/pixel resolution, georeferenced
in the Israeli Transverse Mercator (ITM) coordinate sys-
tem and combined, for each year, into the full mosaic of
the transect. Each mosaic was manually digitized based
on natural borders—roads, rivers, forest fringes, and field
fringes—and the obtained coverage was classified into
the LULCmap with six land-use types and thirteen land-
cover types (Table 4).

In what follows, we exploit six land uses only and call
the vector map resulting from the manual classification of
aerial photos the parcel map. For convenient comparison
between aerial and satellite imagery-based maps, we ras-
terize a parcel at 30 £ 30 m resolution, following the
majority rule.We call the resultingmaps the parcel grid.

Landsat Imagery and Classification

The Landsat images of the study area from the USCG
and GLCF databases (GLCF, 2013) were available for

Figure 1. Netanya’s transect.
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1972 and 1983, for the same seasons. In three other cases,
the Landsat imagery was available for the same season
but with one-year shifts between the satellite and the
aerial photos: 1992 (instead of 1993), 2000 (instead of
1999), and 2007 (instead of 2008).

All Landsat data were coregistered in the ITM coordi-
nate system and geometrically corrected, preserving 30-m
pixel size. To compensate for scene-specific differences in
reflectance due to sensor specifications, differences in sun
angle, and atmospheric optical thickness, all images were
calibrated by histogram matching. The reference for the
calibration was the latest Landsat image of 2007. Three
bands of the Landsat MSS and four of the TM images
were used for classification (Table 5). The cells of the
LandsatMSS images of 1972 available at 60-m resolution
were resampled (mostly subdivided into four due to a
good fit between the cell boundaries) to fit the Landsat
TM at 30-m resolution, using a nearest neighbor
approach.We interpreted land uses in the Landsat images
with four pixel-based and one object-basedmethod.

All exploited pixel-based classification methods are
the traditional first choice of a CA modeler:

� K-means (unsupervised classification).
� ISODATA (unsupervised classification).
� ML (supervised classification).
� Guided clustering (hybrid classification).

Two unsupervised (K-means and ISODATA) clas-
sification methods are used most frequently in the
CA studies (Table 1). They are both based on
pixel spectral characteristics and apply an iterative
procedure of clustering that assigns pixels to the
cluster with the nearestmean value (Venkateswarlu
and Raju 1992; Lu and Weng 2007). The K-means
method assumes that the number of clusters is

known a priori, whereas the ISODATA algorithm
follows the logic of the K-mean but, additionally,
allows merging of clusters or splitting a cluster
into two.

ML is the method of supervised classification that is
most popular in CA studies (Benediktsson, Swain, and
Ersoy 1989; Paola and Schowengerdt 1995; Ahmad
and Quegan 2012). It estimates probabilities of a pixel
belonging to one of several predefined LULC classes
based on their signatures, and the pixel is then
assigned to the class for which the probability is the
highest. The ML algorithm is very sensitive to the
training signature sampling, and in this article we
exploit signatures that are derived from the areas of
the Landsat images that correspond to the unambigu-
ous areas representing different LULC classes in the
manually classified aerial photos. The hybrid or
“guided clustering” merges unsupervised and super-
vised classification: First, the results of unsupervised
ISODATA clustering are exploited as training data to
generate spectral signatures of the land uses. Then,
based on these signatures, a supervised ML classifica-
tion is performed (Lillesand and Kiefer 2000). All four
pixel-based methods were applied with the ENVI 5.2
software (Canty 2010).

The object-based classification approach involves
two steps: segmentation and classification. The
method we apply in this article consists of mean-shift

Table 3. Resolution of aerial photos, by year

Year 1972 1983 1993 1999 2008

Scale 1:50,000 1:40,000 1:30,000 1:20,000 1:12,000

Table 4. The land use/land cover types identified in the
Netanya data set

Land use type Code Land cover

Built-up area BU BU1: Residential, institutes, public,
commercial units in a city

BU2: Industry, military, cemetery,
commercial units outside a city

BU3: Area under construction
Agriculture AG AG1: Cropland, cultivated areas

AG2: Vineyard, olive and fruit trees, etc.
AG3: Greenhouse and warehouse

Vegetated area VG VG1: Parks, artificial forestation,
recreational, sport field, lawns

VG2: Shrubs, grassland, bare rocks,
sparsely vegetated areas

Open space OS OS1: Dumps, dunes, beaches, mineral
extraction sites

OS2: Abandoned agricultural and fallow
fields

OS3: Unpaved roads
Water WA WA1: Rivers, lakes, reservoirs, sea
Transportation RD RD1: Paved roads

RD2: Rail networks, parking lots

Table 2. Population of Netanya and the Sharon District
(CBS 2009)

Population (thousands) 1972 1983 1995 2008

Netanya 71.1 102.3 146.1 180.1
Sharon District 143.5 190.4 275.2 390.8
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clustering segmentation (Comaniciu and Meer 2002)
and RF classification algorithms (Breiman 2001).

Segmentation of the RS Imagery with Mean-Shift
Algorithm

Segmentation aims at partitioning the image into
homogeneous segments, based on the similarity of
pixel intensities and spatial proximity. Ideally, seg-
ments should closely resemble the spatial extent of
land-use features presented in the remote sensing
image. In this article we apply mean-shift segmen-
tation clustering (Comaniciu and Meer 2002) as
implemented in the ENVI/IDL 5.2. software (Canty
2010).

Mean-shift clustering is a mode-seeking segmen-
tation technique that associates each pixel in an
image with a spatially aggregated cluster—a seg-
ment. Practically, it means that pixels with values
that appear most often in a particular region of the
image will be aggregated together. The main advan-
tage of the algorithm is that prior information
about the number of desired segments is not
needed. The algorithm iteratively associates every
pixel with locations of the pixels’ local maxima,
calculated by shifting a search window throughout
the image. The windows that end up on the same
locations are merged and pixels are clustered into a
segment. The detected segment is assigned with the
mean value of its pixels.

Random Forest Algorithm of Segment Classification

The RF algorithm is a nonparametric method of
supervised image analysis that utilizes classification
and regression tree (CART) algorithms (Breiman
2001). The RF algorithm creates an ensemble of

random binary trees, where each tree is built for a
sample drawn, with replacement, from the reference
land-use data set. These trees provide discrete clas-
sification predictions, whereas the final decision is
made with respect to the class that receives the
majority of predictions from all the constructed
trees. Tree design maximizes a measure of dissimi-
larity between land-use classes, measuring the
“impurity” of a given segment with respect to the
rest of the classes. In this study, the RF algorithm
in its CRAN-R implementation (CRAN-R, Version
2.15, R Foundation for Statistical Computing,
Vienna, Austria) is applied as the classification step
to assign the land uses defined in Table 4 to the
segments.

In CRAN-R implementation, the RF classifier
demands two parameters for prediction: the desired
number of classification trees and the number of pre-
diction variables that are used at each node to make
the tree grow.We set the number of trees to 100 and
exploited all four available spectral bands of the Land-
sat imagery as prediction variables.

Transition Probability Matrices

In what follows we characterize the land-use
changes by probabilities of transition pij(t0, t1) between
uses i and j during time interval (t0, t1). Formally, let N
be the number of land uses in the area, Si(t0) is the
total area with use at t0 of i and the parts of Si(t0) that
have changed into the uses 1, 2, . . ., N during (t0, t1)
are Si1(t1), Si2(t1), . . ., SiN(t1). Then pi1(t0, t1) D
Si1(t1)/Si(t0), pi2(t0, t1) D Si2(t1)/Si(t0), . . ., piN(t0, t1) D
SiN(t1)/Si(t0).

The state of the land use at t0 is given by the row
vector of the land uses S(t0) D (S1(t0), S2(t0), . . .,
SN(t0)) at t0 and the land-use dynamics between years
t0 and t1 are given by matrix P(t0, t1) of transition
probabilities for the period (t0, t1):

P.t0; t1/D
p11 p12 . . . p1N
p21 p22 . . . p2N
. . . . . . . . . . . .

pN1 pN2 . . . pNN

0
BBB@

1
CCCA; where 0 � pij< 1 and

XN
jD 1

pijD 1

(1)

In vector form, this can be presented as

S t1ð ÞD S t0ð Þ�P t0; t1ð Þ:
If the probability that a land use i will become j
does not depend on the history of a process, then

Table 5. Landsat MSS/TM sensor characteristics

Year
Landsat
sensor

Resolution
(m)

Wavelength (mm) of
the spectral channels

that were used in classification

1972 MSS 60 Band 1/Green /0.50–0.60
Band 2/Red/0.60–0.70
Band 3/Near-infrared/0.70–0.80

1983 TM 30 Band 1/Blue/0.45–0.52
1992 Band 2/Green/0.52–0.60
2000 Band 3/Red/0.63–0.69
2007 Band 4/Near-infrared/0.76–0.90
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the land-use changes can be described by the first-
order Markov process and the state of the system
after several time steps t1, t2, . . ., tk can be repre-
sented as

S tkð ÞD S t0ð Þ�P t0;t1ð Þ�P t1; t2ð Þ� . . .� P tk ¡ 1; tkð Þ: (2)

The values of transition probabilities pij(t0, t1) evi-
dently depend on the length of the time period (t0,
t1). Typically, for time intervals of several years,
the majority of the land uses do not change and
the matrix of the land-use transition probabilities
for CA has close to unit values on the diagonal.
The longer the period of time (t0, t1), the lower the
diagonal elements pii(t0, t1) and the higher the off-
diagonal ones.

Different lengths of the time periods between the
years of observation raise the problem of comparing
transition matrices obtained for these periods (Takada,
Miyamoto, and Hasegawa 2010). Namely, according
to Equation 2, if all probabilities are constant but the
length of the period (t1, t2) is twice as long as the
period (t0, t1), then P(t1, t2) D P(t0, t1)

2.
To resolve this problem, let us recall that for the

simplest case of growth rates r1 and r2 given for
the periods (t0, t1) and (t1, t2) time units, respectively,
the problem of comparison can be resolved by estimat-
ing and comparing growth rates per one time unit:
r1

0 D r1
(1/(t1 – t0)) and r2

0 D r2
(1/(t2 – t1)). Then,

growth rates can be compared for the period of any
duration.

A similar procedure can be applied to a positively
defined Markov TPM using, in this case, the Jordan
normal form (Soares-Filho, Coutinho Cerqueira, and
Lopes Pennachin 2002; Flamenco-Sandoval, Mart�ınez
Ramos, and Masera 2007); that is, representing P D
P(t0, t1) as

PD AJA¡ 1; (3)

where J is the Jordan normal form of P and A is an
invertible matrix. In a common case J is a diagonal
matrix with the diagonal elements that are (always
positive) eigenvalues of the Markov TPM P D P
(t0, t1).

In case J is a diagonal matrix, the kth root of a Mar-
kov matrix P can be calculated using the kth root of

diagonal elements of J:

J1=kD
λ1=k1 0 . . . 0

0 λ1=k2 . . . 0

. . . . . . . . . . . .

0 0 . . . λ1=kN

0
BBBB@

1
CCCCA

(4)

and, combining Equations 3 and 4:

P1=kD AJ1=kA¡ 1: (5)

If Markov matrix P is estimated for the period of k
years, then a Markov matrix for the period of m years
can be obtained as

.P1=k/mD AJm=kA¡ 1: (6)

Different from the case of the growth rates, the matrix
root of the Markov matrix can contain negative ele-
ments (Takada, Miyamoto, and Hasegawa 2010) that,
evidently, cannot be properly interpreted. We did not
encounter this problem in our calculations, however.

Here we normalize Markov matrices for the ten-year
period using MATLAB 7.12 software (The Math-
Works Inc., Natick, MA, USA). The only modeling
software we are aware of that applies a similar
approach is DINAMICA EGO, which is mostly ori-
ented to ecological modeling such as urban growth
and deforestation (Soares-Filho, Coutinho Cerqueira,
and Lopes Pennachin 2002; Maria de Almeida et al.
2003; Thapa and Murayama 2011).

Results

Figure 2 presents parcel grid land-use maps (top left),
four maps obtained with the pixel-basedmethods of satel-
lite image classification, and the map obtained with the
segmentation method (top right) for the last available
year of the study period, 2007–2008. The rest of the classi-
fied images are presented in theAppendix Figure A1.

The segmentation and parcel grid maps are visually
similar to each other, whereas the maps of pixel-based
classifiers are visually different from them and have an
essentially higher percentage of open space areas that
are spread over the entire transect. The latter is con-
firmed by the kappa and accuracy indexes (Foody 2002),
calculated with ENVI 5.2 for each of the five classifica-
tion methods versus the parcel grid map. The values of
kappa are the lowest for the clustering ISODATA and
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K-means algorithms, intermediate for the hybrid and
ML algorithms, and the highest for the segmentation-
based classification (Table 6). As can be seen, all four
pixel-based classification algorithms performed poorly,
whereas the outcome of the segmentation algorithm
provides a much better fit to the parcel grid map.

To estimate TPMs, we aggregate six land uses in two
ways, into two and three major land-use classes. Two-
class aggregation accounts for built-up (BU) and non-
built (NB) areas, where the NB area combines all land-
use types besides the BU: NB D AG C vegetated area
(VG)C open space (OS)C water (WA)C transporta-
tion (RD) (Figure 3). Three-class aggregation accounts
for built-up (BU), agriculture (AG), and the rest of the
areas (RE), where REDVGCOSCWACRD.

The preceding aggregation is performed after classi-
fication. To assess the effect of a posteriori aggregation,
we performed direct classification of the images into
urban and nonurban. In this case, the classification
was performed after excluding water bodies, as identi-
fied in the parcel grid image, from all images.

Note that for the aggregate maps, the values of
Pc are much higher, whereas for the three-land-use
maps, the values of Pc are close to those obtained
for the six-land-use maps, and the kappa index
remains at the same level as it is for the six-land-
use maps (Table 6). Table 7 presents Pc and kappa
index for the two-value and three-value land-use

maps. The results of the direct classification of the
images with excluded water bodies into two land
uses—urban and nonurban—are very close to those
obtained for the merged land-use maps (Table 7A)
and we do not present them here.

To conclude, the visually low fit between the outcomes
of the pixel-basedmethods and parcel grid is confirmed by
the low values of Pc and kappa. That is, the pixel-based
maps can hardly serve for estimating TPMs. In what fol-
lows, when considering TPMs, we choose theML classifi-
cation that performs best among the pixel-based methods
and compare among four TPMs that are constructed
based on the maps obtained with ML pixel-based, seg-
mentation, parcel grid, and parcel maps methods.

Comparison of Transition Probability Matrices

The full 6 £ 6 TPMs estimated for the original time
intervals for the segmentation, parcel grid, and parcel-
based methods are available online at https://drive.goo
gle.com/open?idD0B_OK-4hDBIH-Y3hObXV5QkFG
aTg.

The 3 £ 3 and 2 £ 2 TPM for the aggregated ML,
segmentation, parcel grid, and parcel-based maps are
also available. In what follows, we illustrate differences
based on the ten-year normalized TPM for the aggre-
gate two-land-use and three-land-use maps.

Figure 2. Land-use maps obtained with the manual classification of the aerial photos of 2008 and land-use maps obtained with the help of
different classification methods for the Landsat image of 2007. Isodata = iterative self-organizing data analysis technique; BU D built-up;
VG D vegetated area; WA D water; AG D agricultural; OS D open space; RD D transportation. (Color figure available online.)
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2 £ 2 Matrices

Table 8 presents the TPM constructed for the two-
value land-use maps. The BU! BU and NB! NB
transitions represent areas that did not change during
the period. The NB ! BU transition describes an
urbanization process and is thus the most important
for the land-use CA. The BU ! NB deurbanization
transition could represent urban shrinking. As can be
seen in Table 8, the transition probabilities for the
various classification methods essentially differ:

No Change Transitions (BU! BU and NB! NB)

The total number of BU! BU transitions for the par-
cel grid is systematically higher than for the parcel

map because roads in the built area usually cover less
than 50 percent of the 30 £ 30 cell and the built-up
cell with roads inside are mostly classified, according
to the majority rule, as urban. The effect of the cell
size becomes insignificant when the grid resolution is
15 £ 15 m (Appendix Figure A2).

The total amount of no change transitions as detected
by the segmentation method varies, by periods, more
than it does for the parcel grid and parcel map methods.
Total amount of no change transitions as detected by
the ML method varies greatly and does not reflect the
tendencies revealed by three other methods.

The great majority of lands did not change during
one time step, providing a high value for Pc. The prob-
ability of the BU ! BU transition varies between

Figure 3. Land-use maps for the built-up and nonbuilt areas, manual classification of the aerial photos of 2008, and various classification
methods for the Landsat image of 2007. See Appendix Figure A2 for the maps of the rest of the periods. Isodata = iterative self-organizing
data analysis technique; BU = built-up; NB = nonbuilt. (Color figure available online.)

Table 6. Pc and k indexes for the Landsat-based classification versus the parcel grid map

Year

K-means ISODATA Hybrid ML Segmentation

PC (%) k PC (%) k PC (%) k PC (%) k PC (%) k

1972 46.5 0.28 44.5 0.28 44.5 0.27 60.4 0.42 87.3 0.78
1983 48.9 0.34 45.4 0.27 47.4 0.32 61.5 0.45 85.5 0.75
1992 40.6 0.22 52.1 0.30 38.4 0.21 48.3 0.35 81.8 0.71
2000 32.0 0.14 48.0 0.29 48.5 0.29 55.1 0.36 79.7 0.68
2007 46.8 0.28 53.4 0.29 45.0 0.24 45.7 0.33 82.4 0.73
Average 43.0 0.25 48.7 0.29 44.8 0.27 54.2 0.38 83.3 0.73

Note: ML D maximum likelihood.
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0.95 and 0.99 for the parcel map and parcel grid and
between 0.93 and 0.97 for the NB! NB transitions.

For the segmentation method, the probability of no
change for the BU and NB states varies, by periods,
between 0.80 and 0.84 and 0.87 and 0.95, respectively,
yet is essentially lower than for the parcel map and
parcel grid.

For the ML method, the probabilities of no change
are essentially lower than for the segmentation
method and do not reflect the tendencies revealed by
the three other methods.

Probabilities of Transitions Between BU and NB States

According to the Netanya aerial photos, the vast
majority of the BU ! NB deurbanization transitions
are related to the sites that look like construction areas
but were abandoned during the period of transition
and thus classified as open areas. For the areas classified
in a certain year as BU, these changes occur only dur-
ing the first time interval after this year.

The estimates of the NB! BU transition probabil-
ities for different methods are qualitatively different.
NB areas do not have roads. That is why, different
from the BU ! BU transitions, the total amount of
transition from NB! BU is the same for parcel map

and parcel grid methods. During the first two periods,
the total amount for construction on the NB area is
between 2.0 and 2.2 km2; then it increases twice to
4.7 km2 for the period of 1993 to 1999 and decreases
to 2.5 km2 again for 2000 to 2007.

For the parcel map and parcel grid, for all periods
besides the period of 1972 to 1983, the probability of
urbanization NB! BU is much higher than the prob-
ability of deurbanization BU ! NB. Excluding the
period of 1972 to 1983, the average ratio of pNB ! BU/
pBU ! NB for the parcel map and parcel grid is close to
4.3. For the 1972 to 1983 period, pNB ! BU/pBU ! NB

is 0.75 for the parcel grid and 0.6 for the parcel-based
estimates.

Segmentation provides the pNB ! BU/pBU ! NB

ratios that are opposite to those obtained with the par-
cel map and parcel grid methods and vary between
0.31 and 0.68. For the ML the pNB ! BU/pBU ! NB

ratios vary even more, between 0.13 and 0.87.
To conclude, for the case of two land-use classes, the

TMP matrix obtained with the ML method is qualita-
tively different from the real TMP matrix in every possi-
ble respect. The segmentation method performs much
better than pixel-based methods but, despite a relatively
good fit between the outcome of the segmentation and
parcel-based classifications, the qualitative view of the

Table 7. Pc and k for the aggregate outputs of the Landsat-based methods versus the parcel grid map for (A) two and (B) three
land-use types

(A)

Year

K-means ISODATA Hybrid ML Segmentation

PC (%) k PC (%) k PC (%) k PC (%) k PC (%) k

1972 81.9 0.36 83.6 0.45 86.2 0.45 87.2 0.47 92.8 0.72
1983 79.7 0.33 80.4 0.30 85.5 0.40 86.3 0.52 92.2 0.73
1992 80.7 0.37 77.9 0.29 82.9 0.34 86.2 0.52 90.9 0.71
2000 76.9 0.31 74.2 0.32 78.2 0.22 80.9 0.33 88.4 0.68
2007 75.1 0.37 67.9 0.20 78.9 0.35 81.7 0.50 89.8 0.73
Average 78.9 0.35 76.8 0.31 82.3 0.35 84.4 0.47 90.8 0.72

(B)

Year

K-means ISODATA Hybrid ML Segmentation

PC (%) k PC (%) k PC (%) k PC (%) k PC (%) k

1972 53.0 0.28 52.1 0.29 68.1 0.46 65.6 0.43 90.1 0.82
1983 53.0 0.31 53.3 0.31 61.2 0.39 64.8 0.45 89.5 0.81
1992 42.9 0.14 42.7 0.15 48.3 0.24 53.7 0.32 86.4 0.77
2000 36.8 0.07 41.8 0.18 44.2 0.20 59.6 0.35 84.5 0.75
2007 50.9 0.27 45.8 0.22 45.6 0.24 50.5 0.30 89.3 0.83
Average 47.3 0.21 47.1 0.23 53.5 0.31 58.8 0.37 88.0 0.80

Note: ML D maximum likelihood.
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land-use transitions obtained from the Landsat segmenta-
tion is opposite to that obtained from the aerial photos.

3 £ 3 Matrices

The matrices of transition constructed for three
land uses (Table 9) provide additional information
on the LULC changes that are related to agricul-
ture lands. Just as in the case of two land uses, the
discrepancy between the results of the pixel-based
and the rest of the classification methods is very
high. We thus exclude pixel-based methods from
further discussion and continue with the transition
matrices constructed for the segmentation and par-
cel-based methods only.

Similar to the results obtained for the two land-use
classes, the parcel-based estimates of the probability of
preserving the same AG and RE land uses are higher
than those obtained with the segmentation method.
At the same time, larger sizes of agriculture parcels
decrease classification error of the segmentation
method, and the differences between AG! AG tran-
sition probabilities characteristic of segmentation and
parcel-based methods are essentially lower than for
the BU! BE and RE! RE transitions.

Generally, the probabilities of the AG ! BU and
RE ! BU transitions (i.e., the probability that the

nonbuilt area will be built up) are essentially higher
for the segmentation than for the parcel-based
methods.

As should be expected, the probabilities of transi-
tion from the NB to the BU state obtained in two-
state classification are unequally split into the AG!
BU and RE ! BU transitions. The majority of con-
structions are erected on the RE lands, and the average
value of the pRE ! BU/pAG ! BU probabilities ratio for
the parcel map and parcel grid methods is 3.3 to 3.5.
The segmentation-based estimate of the same ratio is
only 2.1.

Estimates of the RE ! AG transition probabili-
ties based on the segmentation classification are essen-
tially higher than estimates for the parcel grid and
parcel map methods. Excluding the 1983 to 1992 or
1983 to 1993 period, pRE ! AG > pAG ! RE for all
three classification methods. For the period of 1983 to
1992 or 1983 to 1993, the pRE ! AG > pAG ! RE for
the segmentation method, whereas for the parcel-
based maps, pRE ! AG < pAG ! RE. The average ratio
of the pRE ! AG/pAG ! RE for the parcel-based data is
1.6, whereas for the segmentation it is 2.5, essentially
higher.

To conclude, segmentation-based transition proba-
bilities between agriculture and the rest of the land
uses qualitatively reflect the values obtained by the

Table 8. Transition probability matrices for two-value land-use maps, normalized per ten-year period

ML Segmentation Parcel grid Parcel map

BU NB Total BU NB Total BU NB Total BU NB Total

1972–1983 (Landsat and aerial photos)
p BU 0.64 0.36 0.84 0.16 0.96 0.04 0.95 0.05

NB 0.10 0.90 0.05 0.95 0.03 0.97 0.03 0.97
A (km2) BU 7.2 4.0 11.2 11.3 2.1 13.4 12.3 0.50 12.8 11.4 0.54 11.9

NB 7.7 67.3 75.0 3.7 69.3 73.0 2.0 71.9 73.9 2.0 72.6 74.6
1983–1992 (Landsat)/1983–1993 (aerial photos)

p BU 0.55 0.45 0.80 0.20 0.99 0.01 0.99 0.01
NB 0.06 0.94 0.07 0.93 0.04 0.96 0.03 0.97

A (km2) BU 8.3 6.8 15.1 12.4 2.8 15.2 14.2 0.19 14.4 13.3 0.13 13.4
NB 4.6 66.8 71.4 4.6 66.7 71.3 3.0 69.2 72.2 2.2 71.0 73.2

1992–2000 (Landsat)/1993–1999 (aerial photos)
p BU 0.37 0.63 0.81 0.19 0.98 0.02 0.98 0.02

NB 0.06 0.94 0.13 0.87 0.07 0.93 0.07 0.93
A (km2) BU 4.9 8.2 13.1 13.5 3.3 16.8 16.1 0.35 16.5 15.1 0.25 15.4

NB 4.1 69.4 73.5 9.0 60.7 69.7 4.7 65.4 70.1 4.7 66.6 71.3
2000–2007 (Landsat)/1999–2008 (aerial photos)

p BU 0.76 0.24 0.77 0.23 0.99 0.01 0.99 0.01
NB 0.21 0.79 0.08 0.92 0.05 0.95 0.07 0.93

A (km2) BU 7.1 2.2 9.3 16.6 4.9 21.5 18.9 0.28 19.2 17.5 0.20 17.7
NB 15.9 61.2 77.1 5.2 59.8 65.0 3.1 64.3 67.4 2.3 66.6 68.9

Note: Bold indicates no-change transitions. ML D maximum likelihood; BUD built-up; NB D nonbuilt.
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parcel-based classification. Numerically, however, the
segmentation-based probability estimates are still dif-
ferent from the parcel-based estimates and will cause
essential differences in the model outputs.

Cumulative Versus Directly Estimated Transition
Probabilities in the Case of Three Land Uses

The long-term differences between transition matri-
ces can be estimated comparing the probabilities of
transition accumulated from the year 1972 to the end
of three periods: 1992–1993, 1999–2000, and 2007–
2008 (Table 10). In this way, we can estimate whether
the sequential application of the TPMs results in the
accumulation of error.

The major observations from the cumulative
matrix confirm the results based on the TPMs for
each period. Directly estimated probabilities of
change (off-diagonal elements) are lower than

accumulated ones, and the discrepancy increases
with time. This discrepancy is lowest for the matri-
ces based on the parcel map, higher for the matri-
ces constructed for the parcel grid maps, and
several times higher for the transition probability
matrices constructed from the maps classified with
the segmentation methods.

Different from the other transition probabilities,
directly estimated and accumulated probabilities of
the AG ! AG (that agriculture land use will not
change) are similar for all three methods.

According to the directly estimated transition
matrices, for the parcel map and parcel grid maps, the
major path of land-use transition is AG! RE! BU.
For the segmentation-based maps, AG! BU and AG
! RE are equally probable. These tendencies are also
seen in accumulated transition matrices, but the abso-
lute values of the probabilities to change land use,
according to the accumulated matrices, are 10 to 20
percent higher.

Table 9. Ten-year normalized transition probability matrices for three land uses

ML Segmentation Parcel grid Parcel map

BU AG RE Total BU AG RE Total BU AG RE Total BU AG RE Total

1972–1983 (Landsat and aerial photos)
p BU 0.641 0.062 0.297 0.841 0.110 0.049 0.963 0.009 0.028 0.958 0.011 0.031

AG 0.069 0.640 0.291 0.035 0.919 0.046 0.018 0.936 0.046 0.014 0.935 0.051
RE 0.139 0.224 0.637 0.100 0.131 0.769 0.064 0.083 0.853 0.051 0.080 0.869

A (km2) BU 7.2 0.70 3.3 11.2 11.3 1.5 0.66 13.5 12.4 0.12 0.35 12.9 11.4 0.13 0.37 11.9
AG 2.8 25.6 11.6 40.0 1.9 50.3 2.5 54.7 0.96 49.7 2.4 53.1 0.71 49.2 2.7 52.6
RE 4.9 7.9 22.5 35.3 1.8 2.4 14.1 18.3 1.3 1.7 17.5 20.5 1.1 1.8 19.1 22.0

1983–1992 (Landsat)/1983–1993 (aerial photos)
p BU 0.550 0.067 0.383 0.810 0.132 0.058 0.987 0.003 0.010 0.987 0.003 0.010

AG 0.031 0.409 0.560 0.042 0.904 0.054 0.015 0.870 0.115 0.014 0.870 0.116
RE 0.096 0.112 0.792 0.117 0.155 0.728 0.075 0.061 0.864 0.064 0.058 0.878

A (km2) BU 8.3 1.0 5.8 15.1 12.3 2.0 0.88 15.2 14.3 0.04 0.15 14.5 13.2 0.04 0.13 13.4
AG 1.1 13.8 18.9 33.8 2.3 48.9 3.0 54.2 0.77 44.8 5.9 51.5 0.71 44.3 5.9 50.9
RE 3.6 4.2 29.8 37.6 2.0 2.7 12.5 17.2 1.5 1.3 17.8 20.6 1.4 1.2 18.9 21.5

1992–2000 (Landsat)/1993–1999 (aerial photos)
p BU 0.376 0.188 0.436 0.807 0.133 0.060 0.984 0.001 0.015 0.976 0.004 0.020

AG 0.022 0.748 0.230 0.121 0.796 0.083 0.051 0.815 0.134 0.045 0.811 0.144
RE 0.063 0.481 0.456 0.155 0.201 0.644 0.110 0.179 0.711 0.091 0.164 0.745

A (km2) BU 4.9 2.5 5.7 13.1 13.5 2.2 1.01 16.7 16.4 0.07 0.26 16.7 14.9 0.06 0.31 15.3
AG 0.45 14.8 4.6 19.9 6.2 40.5 4.2 50.9 2.4 37.5 6.2 46.1 2.0 37.0 6.6 45.6
RE 3.4 25.8 24.4 53.6 2.9 3.8 12.1 18.8 2.6 4.3 17.0 23.9 2.3 4.2 19.1 25.6

2000–2007 (Landsat)/1999–2008 (aerial photos)
p BU 0.751 0.049 0.200 0.784 0.131 0.085 0.993 0.001 0.006 0.993 0.001 0.006

AG 0.137 0.222 0.641 0.078 0.859 0.063 0.020 0.949 0.031 0.018 0.949 0.033
RE 0.325 0.091 0.584 0.129 0.126 0.745 0.069 0.098 0.833 0.054 0.089 0.857

A (km2) BU 7.1 0.46 1.9 9.5 16.9 2.8 1.8 21.5 19.2 0.02 0.11 19.3 17.6 0.02 0.10 17.7
AG 5.5 8.9 25.9 40.3 3.7 40.6 3.0 47.3 0.87 41.2 1.3 43.4 0.76 40.7 1.4 42.9
RE 11.9 3.3 21.4 36.6 2.3 2.2 13.2 17.7 1.7 2.3 19.9 23.9 1.4 2.3 22.3 26.0

Note: Bold indicates no-change transitions. ML D maximum likelihood; BUD built-up; AG D agricultural; RE D remaining area.
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The largest differences between the directly esti-
mated and accumulated transition probabilities are
those of the AG ! RE and RE ! AG transitions.
Accumulated values of these probabilities are essentially
higher than directly estimated. This clearly indicates
the problem of interpretation of the nonurban land uses.

Discussion and Conclusions

Putting it straightforwardly, our major and novel
result is practically a ban on all “easy” parcel-based
methods. In our case, these methods cannot even be
employed as a source of information for the land-use
patterns, because the values of the Pc and kappa indexes
are very low. The employed object-based method works
much better and provides adequate estimates of the
land-use patterns. These patterns are yet imprecise for
estimating transition probabilities, however.

Our results basically contradict an essential part of
CA practice. With regard to the data sources of the
twenty-two papers listed in Table 1, seven employ
vector LULC maps acquired from the National Land
Cover or CORINE Land Cover databases. Another
two are based on the manual interpretation of high-
resolution satellite images and aerial photos and are

not accompanied by accuracy assessment. The remain-
ing thirteen are based on the direct classification of RS
images at resolutions of 30 m or lower from the Land-
sat TM/ETMC, ASTER, and SPOT satellites. Pixel-
based methods are employed in eight papers that
report accuracy between 70 percent and 94 percent;
four employ object-based methods and report accuracy
between 65 percent and 93 percent; and in one of the
papers the images were classified manually. That is, at
least half of the CA models in Table 1 are based on
images that, according to our study, cannot provide
correct classification of LULC changes, no matter how
high the reported values of Pc and kappa.

At least two reasons for this discrepancy can be
proposed:

1. The level of heterogeneity of the area investi-
gated in this article is essentially higher than for
the typical area of CA studies. For the exemplar
year of 2007–2008, for the 15 £ 9 km investi-
gated transect, the average area of an estimated
land-use segment is 12.1 ha according to the seg-
mentation and 6.1 ha according to the parcel-
based classification (i.e., about 135 and 69 30 £
30 m cells, respectively). Large units of forests,

Table 10. Directly estimated versus cumulative transition probability matrices for three land uses (BU, AG, and RE), for
three periods, each starting in 1972

Segmentation Parcel grid Parcel map

BU AG RE BU AG RE BU AG RE

1972–1992 (Landsat)/1972–1993 (aerial photos)
p direct BU 0.818 0.139 0.043 0.959 0.011 0.030 0.956 0.011 0.033

AG 0.050 0.851 0.099 0.029 0.834 0.137 0.029 0.832 0.139
RE 0.165 0.132 0.703 0.132 0.081 0.787 0.110 0.074 0.816

p accumulated BU 0.692 0.218 0.090 0.953 0.012 0.035 0.948 0.014 0.038
AG 0.072 0.843 0.085 0.035 0.817 0.148 0.030 0.817 0.153
RE 0.176 0.251 0.573 0.129 0.124 0.747 0.107 0.120 0.773

1972–2000 (Landsat)/1972–1999 (aerial photos)
p direct BU 0.840 0.113 0.047 0.965 0.007 0.028 0.961 0.008 0.031

AG 0.101 0.803 0.096 0.058 0.791 0.151 0.055 0.789 0.156
RE 0.255 0.100 0.645 0.184 0.062 0.754 0.153 0.057 0.790

p accumulated BU 0.598 0.284 0.118 0.942 0.017 0.041 0.929 0.022 0.049
AG 0.174 0.697 0.129 0.093 0.692 0.215 0.080 0.688 0.232
RE 0.262 0.338 0.400 0.215 0.235 0.550 0.180 0.225 0.595

1972–2007 (Landsat)/1972–2008 (aerial photos)
p direct BU 0.892 0.071 0.037 0.965 0.007 0.028 0.960 0.007 0.033

AG 0.109 0.793 0.098 0.087 0.790 0.123 0.081 0.788 0.131
RE 0.259 0.078 0.663 0.215 0.071 0.714 0.177 0.066 0.757

p accumulated BU 0.506 0.337 0.157 0.939 0.021 0.040 0.926 0.026 0.048
AG 0.207 0.638 0.155 0.121 0.678 0.201 0.105 0.673 0.222
RE 0.283 0.375 0.342 0.256 0.277 0.467 0.215 0.266 0.519

Note: Bold indicates no-change transitions. BU D built-up; AG D agricultural; RE D remaining area.
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agriculture, or water area surfaces can essentially
increase the values of the Pc and kappa indexes.

2. Selection of the GCPs is not fully random. The
GCPs that, unintentionally, are selected beyond
the areas of highly mixed land uses can result in
higher values of Pc and kappa. Our data make it
possible to simulate this nonrandom choice.
First, we applied the ArcGIS RegionGroup tool
to merge adjacent parcels classified as having
identical LULC on a parcel map into larger poly-
gons. Then we constructed a series of buffers of
30-, 60-, 90-, and 120-m width around the
boundaries of the obtained polygons. Then,
1,500 GCPs were randomly distributed over the
area beyond the buffers. Note that the wider a
buffer is, the further away the GCPs are from the
boundaries between the continuous areas of the
same LULC class. Finally, the values of Pc and
kappa for the segmentation- and ML-generated
map were estimated.

Nonrandom spread of GCPs “improves” the correct-
ness of the segmentation method (Figure 4): The
value of kappa increases from 0.76 to 0.91 when a min-
imal buffer of 30-m width is considered and reaches
99.0 percent for a buffer width of 120 m. The improve-
ment is less for the ML classification: The accuracy
and kappa increase to Pc D 52.5% and k D 0.4 when
the buffer width is 60 m and to 57.5 percent and 0.45
percent when the buffer width is 120 m.

This and other possible explanations do not simplify
the problem. The focus of CA study is, undoubtedly,
on the borders between homogeneous areas. These are

the lands where the majority of land-use changes take
place. These boundaries, themselves, move in space.
Pixel-based classification methods have inherent prob-
lems when classifying pixels with reflectance that is
defined by two or more land-cover types and, as we
have demonstrated in this article, the segmentation
method cannot fully avoid these problems either. That
is, even the standard level of accuracy characterized by
Pc (»80–85 percent) and k (»0.75–0.8) does not guar-
antee a correct estimate of the transition probabilities.
Generally, although high overall accuracy of classifica-
tion is necessary for CA modeling of the LULC
dynamics, it is still insufficient. Local classification
errors can propagate and, in case important but local
changes are missed, the CA model dynamics can still
significantly deviate from the reality. These issues go
far beyond the topic of our article and are discussed in
depth in Chapter 9 of White, Engelen, and Uljee
(2015).

Uncertainties in RS data for simulation LULC
dynamics have been raised by several authors (Pon-
tius, Huffaker, and Denman 2004; van der Kwast
et al. 2009; Pontius and Petrova 2010). Among
them, Pontius and Petrova (2010) proposed the
most comprehensive model assessment and valida-
tion procedure, which is based on a series of compar-
isons between reference maps representing the built
and nonbuilt area at several time moments and the
maps generated for the same time moments by the
CA model. Any method of assessment and valida-
tion demands reference LULC maps that properly
reflect real-world land uses and covers. As we dem-
onstrate, the initial data for constructing these maps
and the classification methods should be chosen
with great care.

Our article clearly raises demand for a critical revi-
sion of the entire CA framework. We claim that the
current “optimistic” view, which takes for granted that
the modeler possesses adequate estimates of land-use
patterns and land-use changes, should be substituted
by the positivistic CA framework that builds on care-
fully validated and commonly available depositories of
land-use maps.

Here were initiate the list of constraints that should
be imposed on CA-oriented classification:

� Vector-based CA that inherently account for
parcels’ boundaries should be preferred over cell-
based CA.

� The resolution of satellite images used in CA studies
should be high, 10 m and below. Landsat images of

Figure 4. Overall accuracy Pc and kappa as dependent on the
width of buffer around the parcels’ boundaries based on the Land-
sat 2007 image. For the entire image, Pc D 84.2% and k D 0.73 for
the segmentation method, and Pc D 45.7% and k D 0.33 for the
maximum likelihood method.
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lower resolution cannot be the only source of
information.

� All estimates of changes should be normalized
regarding the same time unit.

� Land-use classification should be carefully validated.
Validation should be focused on the boundaries
between the land uses. GCPs located within the
internal parts of large homogeneous forests or agri-
culture areas are of low value for CA-oriented
classification.

We appeal for a new perspective on CA modeling: In
the future, it should be based on a series of a high-reso-
lution, carefully validated, long-term land-use maps
that reflect different types of land-use dynamics and
represent different types of land planning systems and
different periods of population growth and economic
development. The accompanying metadata on histori-
cal events and trends will have major value for proper
model calibration and validation.
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There is always a chance that we are wrong in our
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our results for the future of CA modeling, we make our
data and results available at https://drive.google.com/
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Figure A1. Land-use maps obtained with the manual classification of the aerial photos and land-use maps obtained with the help of various
classification methods for the Landsat images. The columns are ordered according to the average value, by years, of the accuracy Pc.
ISODATA = iterative self-organizing data analysis technique. (Color figure available online.)

Figure A2. Land-use maps for built-up and nonbuilt areas, compiled by manual classification of aerial photos and various classification
methods for the Landsat images. The columns are ordered as in the figure of the Appendix. ISODATA = iterative self-organizing data analy-
sis technique. (Color figure available online.)
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